

HAFFMANS IN-LINE O₂ MEASUREMENT KHS GMBH

CASE STUDY

KEY FACTS

Application

Control of O_2 content in soft drink blending

System manufacturer KHS GmbH, Germany

Measurement devices used In-line O_2 Gehaltemeter, type OGM

Enduring partnership

As a globally operating manufacturer of filling and packaging systems for the beverage, food and non-food industries, KHS GmbH is a major player in the marketplace.

KHS and Pentair Haffmans have a long standing partnership in the field of measurement technology. In addition to the OGM In-line O₂ Gehaltemeter, KHS also uses the Haffmans Bottle Monitor, Keg Monitor and Redpost System for tunnel pasteurizers.

MODERN OXYGEN MANAGEMENT IN SOFT DRINK BLENDING

To control the oxygen (O_2) content in carbonated soft drinks, Germany-based KHS GmbH uses Pentair Haffmans' In-line equipment. As part of a major project lasting into 2015, 38 In-line O_2 Gehaltemeters, type OGM will be delivered to the international filling and packaging system manufacturer.

The O_2 measuring instruments will be integrated into 19 fully automatic, multicomponent mixing systems, type Innopro Paramix C that KHS is building for a leading soft drink producer in the Middle East. Two OGMs will be installed in each mixing unit to monitor the O_2 content after the water de-aeration system and in the end product.

"We often use Haffmans proven measuring technology," said Alfons Abels-Rümping, from product management at KHS's Competence Center of Process Technology. "We have been able to convince the customer to adopt this specific measuring technology."

A wide range of soft drinks as well as mineral water will be blended with the Innopro units. Because the available raw water can contain up to 10 mg/l O_2 , vacuum degassing in the unit reduces it to a value below 0.3 mg/l. Adherence to this specification is verified by the OGM installed after the water de-aeration system. The second OGM monitors the O_2 specifications in the end product by, for example, detecting O_2 that could enter the product in contaminated carbon dioxide. This ensures maximum product safety, especially during the production of products that are prone to oxidation.

Optical O, measurement

In optical O_2 measurement, a sensor determines the O_2 content based on the quenching of luminescence. Pentair Haffmans introduced this innovative measuring technology to the market in 2004, and today it is the reference method for determining O_2 levels in the brewing and soft drink industries.

In this measurement process the fluorescence changes depending on O_2 partial pressure. The O_2 content is calculated based on the O₂ partial pressure and the temperature measured. The measurement cannot be influenced from outside and therefore is not dependent on the operator or the product. It can also be used in gaseous phases as well as in colored or cloudy products. This is an important factor, especially when various types of beverages are being produced. In addition, optical O₂ measurement only requires minor maintenance and calibration. It provides excellent measurement stability and very fast response times, which reduces operating costs and product loss, and increases productivity.

HAFFMANS BV

P.O. BOX 3150 NL-5902 RD VENLO, NETHERLANDS INFO@HAFFMANS.NL WWW.HAFFMANS.NL

All Pentair trademarks and logos are owned by Pentair Ltd. All other brand or product names are trademarks or registered marks of their respective owners. Because we are continuously improving our products and services, Pentair reserves the right to change specifications without prior notice. Pentair is an equal opportunity employer.

CS OGM KHS E-1/14 © 2013 Pentair Ltd. All Rights Reserved.